Master Training Program on Water (Water Supply, In-house Processing, End-of-Pipe) in Textile and Garment factories

Promotion of Sustainability in the Textile and Garment Industry in Asia - FABRIC

Outlines

Contents

✓ Lab to Bulk and Bulk to bulk

Processing parameters

- ✓ Common parameters
- ✓ Batch vs semi-continuous/continuous

Sensors' performances

RFT (Right first time)

Right first time (RFT)

- Improve productivity
- Reduce water consumption
- Reduce chemical consumption
- Increase profitability
- Ensure smooth operation

Source: Mohammad Abbas Uddin 2009

What Could be different?

- Mechanical restrictions, and the agitation speeds of the dyebaths
- Substrate:
 - ✓ Labdip fabric and bulk fabric
 - ✓ Original fabric weight is less due to the scouring/Bio-polishing loss.
- **Dyes and Chemicals**
 - ✓ Lab sample and bulk dyes in store
 - ✓ Strength
 - ✓ Moisture content: Lump formation?

What Could be different?

Process consistency

- ✓ Water quality
- √ liquor ratio
- ✓ Weight measurement: Human error?
- ✓ Alkali dosing in the lab
- ✓ Dyeing parameters

What could be be done

Substrate:

- ✓ Fabric dyed in laboratory and bulk should be same.
- ✓ Adjust wt. of Labdip fabric according to wt. loss in bulk (4-8%)

Dyes and Chemicals

- ✓ Purity of dyes: Insoluble matters and moisture
- Quality checking of Lab dyes and bulk dyes: Dyeing in identical condition, check colour
- ✓ Use / change dyes and chemical with a same strength
- ✓ Check solubility of dyes

What could be be done

- Process consistency
 - ✓ Frequent checking of water
 - ✓ Liquor ratio: As close as possible
 - ✓ Alkali solution must be made to the reference pot
 - ✓ Check weigh system
 - ✓ Use the exact lab recipe for first bulks OR adjust lab recipes prior to 1st bulk are based on empirically proven correlation factors
 - ✓ Bulk dyeing and use the same recipe to do lab dyeing
 - ✓ Update Batch card
- Reduce multiple sampling stages in dyeing
- Create a formal failure analysis procedure
- Use an automated dispenser, Central dyehouse controller

Bulk to bulk RFT

Scenario: Repeat dyeing

- Short Interval
 - Differences in the degree of pretreatment such as scouring,
 - Fluctuations in the water quality
 - Inappropriate dye selection
- Long Interval:
- Change in Dyeing Machine
- Differences in the weight of the fabric
- Changes in Liquor ratio
- Change in Dyes/Chemical combination
- Change of dye lot: Strength change

What could be be done

- **Proper Planning**
- Use enzyme/chemicals in proper condition and applicable to broad range
- Use dyes with high reproducibility
- Use compatible dyes in chemicals
- Check s.g., pH of the dyebath
- Create a formal failure analysis procedure
- Use an automated dispenser, Central dyehouse controller

Textile Wet Processing

Wet processing

- Textile dyeing Batch vs Continuous
 - ✓ Pre-treatment
 - ✓ Dyeing
 - √ Finishing
- Garments washing
- Other dyeing
 - ✓ Yarn dyeing
 - ✓ Fibre dyeing
 - √ Accessories dyeing

Pretreatment

- Desizing
- Scouring
- Washing
- Bleaching
- Biopolishing
- Heat setting
- Singeing

Knit fabric processing sequence

Textile dyeing

Substrate	Machin e	Production	Fabric	Pressure	Substrat e	Dyes
Natural: Cotton/Wool/Silk	Vat	Batch	Knit	Open	Fibre	Natural
Synthetic / manmade	Jig	Continuous	Woven	Closed vessel	Yarn	Reactive/metal complex
Blend	Jet/	Semi- Continuous	Twill/Denim	High pressure	Garments	Acid/Basic

Dyeing Curve

Textile Finishing

- Drying, compacting/sanforizing, heatsetting
- Basic Softening, dry finish
- Functional Finish Antimicrobial, wrinkle resistant, moisture management

Wet processing parameters

Common parameters

- ✓ Water Hardness
- ✓ pH
- ✓ Temperature

Batch dyeing

- ✓ Liquor ratio
- ✓ Pressure
- ✓ Electrolytes

Continuous/Semi-continuous dyeing

- ✓ Pick up speed
- √ Pickup percentage

Liquor ratio

Fabric : liquor: : 1:?

- ✓ Wt/wt
- ✓ Chemical concentration g/L
- ✓ Dyestuff % of the materials (fabrics/Yarn)

pH of the bath

- ✓ Depends on the process
- ✓ Adjusted by acids/alkalis
- √ Wash off after use

Hardness

Hardness of the water

- Depends on the process
- Adjusted by WTP
- Adjusted in the bath (by adding sequestering agents)

Temperature

Temperature of the bath

- ✓ Depends on the process
- ✓ Adjusted by adding steam/hot water/ heat exchanger

Pressure

Pressure of the bath

- ✓ Depends on the process
- ✓ Adjusted by compressor

Electrolytes

- **Electrolytes of the bath**
 - ✓ Depends on the process
 - √ Adjusted by salt/soda
- Measured by either TDS meter or Baume hydrometer

Pick-up speed

Pick-up speed of the dyes

- Depends on the process/fabrics
- ✓ Adjusted by overflow / reel speed / chemicals

Checking the sensors' performances

- Sense the parameters
- Automatic / manual decision making tool
- Regular maintenance is a must
- Always replace with the best quality (if necessary)

